skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Albert, F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The conduction efficiency of ions in excitable tissues and of charged species in organic conjugated materials both benefit from having ordered domains and anisotropic pathways. In this study, a photocurrent‐generating cardiac biointerface is presented, particularly for investigating the sensitivity of cardiomyocytes to geometrically comply to biomacromolecular cues differentially assembled on a conductive nanogrooved substrate. Through a polymeric surface‐templated approach, photoconductive substrates with symmetric peptide‐quaterthiophene (4T)‐peptide units assembled as 1D nanostructures on nanoimprinted polyalkylthiophene (P3HT) surface are developed. The 4T‐based peptides studied here can form 1D nanostructures on prepatterned polyalkylthiophene substrates, as directed by hydrogen bonding, aromatic interactions between 4T and P3HT, and physical confinement on the nanogrooves. It is observed that smaller 4T‐peptide units that can achieve a higher degree of assembly order within the polymeric templates serve as a more efficient driver of cardiac cytoskeletal anisotropy than merely presenting aligned ‐RGD bioadhesive epitopes on a nanotopographic surface. These results unravel some insights on how cardiomyocytes perceive submicrometer dimensionality, local molecular order, and characteristics of surface cues in their immediate environment. Overall, the work offers a cardiac patterning platform that presents the possibility of a gene modification‐free cardiac photostimulation approach while controlling the conduction directionality of the biotic and abiotic components. 
    more » « less
  2. In this paper, we report on the experimental demonstration of single-slit diffraction exhibited by electrons propagating in encapsulated graphene with an effective de Broglie wavelength corresponding to their attributes as massless Dirac fermions. Nanometer-scale device designs were implemented to fabricate a single-slit followed by five detector paths. Predictive calculations were also utilized to readily understand the observations reported. These calculations required the modeling of wave propagation in ideal case scenarios of the reported device designs to more accurately describe the observed single-slit phenomenon. This experiment was performed at room temperature and 190 K, where data from the latter highlighted the exaggerated asymmetry between electrons and holes, recently ascribed to slightly different Fermi velocities near the 𝐾 point. This observation and device concept may be used for building diffraction switches with versatile applicability. 
    more » « less
  3. Abstract The Hubbard model is an essential tool for understanding many-body physics in condensed matter systems. Artificial lattices of dopants in silicon are a promising method for the analog quantum simulation of extended Fermi-Hubbard Hamiltonians in the strong interaction regime. However, complex atom-based device fabrication requirements have meant emulating a tunable two-dimensional Fermi-Hubbard Hamiltonian in silicon has not been achieved. Here, we fabricate 3 × 3 arrays of single/few-dopant quantum dots with finite disorder and demonstrate tuning of the electron ensemble using gates and probe the many-body states using quantum transport measurements. By controlling the lattice constants, we tune the hopping amplitude and long-range interactions and observe the finite-size analogue of a transition from metallic to Mott insulating behavior. We simulate thermally activated hopping and Hubbard band formation using increased temperatures. As atomically precise fabrication continues to improve, these results enable a new class of engineered artificial lattices to simulate interactive fermionic models. 
    more » « less
  4. Linear quantum measurements with independent particles are bounded by the standard quantum limit, which limits the precision achievable in estimating unknown phase parameters. The standard quantum limit can be overcome by entangling the particles, but the sensitivity is often limited by the final state readout, especially for complex entangled many-body states with non-Gaussian probability distributions. Here, by implementing an effective time-reversal protocol in an optically engineered many-body spin Hamiltonian, we demonstrate a quantum measurement with non-Gaussian states with performance beyond the limit of the readout scheme. This signal amplification through a time-reversed interaction achieves the greatest phase sensitivity improvement beyond the standard quantum limit demonstrated to date in any full Ramsey interferometer. These results open the field of robust time-reversal-based measurement protocols offering precision not too far from the Heisenberg limit. Potential applications include quantum sensors that operate at finite bandwidth, and the principle we demonstrate may also advance areas such as quantum engineering, quantum measurements and the search for new physics using optical-transition atomic clocks. 
    more » « less
  5. Powders and films composed of tin dioxide (SnO2) are promising candidates for a variety of high-impact applications, and despite the material’s prevalence in such studies, it remains of high importance that commercially available materials meet the quality demands of the industries that these materials would most benefit. Imaging techniques, such as scanning electron microscopy (SEM), atomic force microscopy (AFM), were used in conjunction with Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) to assess the quality of a variety of samples, such as powder and thin film on quartz with thicknesses of 41 nm, 78 nm, 97 nm, 373 nm, and 908 nm. In this study, the dependencies of the corresponding Raman, XPS, and SEM analysis results on properties of the samples, like the thickness and form (powder versus film) are determined. The outcomes achieved can be regarded as a guide for performing quality checks of such products, and as reference to evaluate commercially available samples. 
    more » « less
  6. Two-dimensional (2D) materials that exhibit charge density waves (CDWs)—spontaneous reorganization of their electrons into a periodic modulation—have generated many research endeavors in the hopes of employing their exotic properties for various quantum-based technologies. Early investigations surrounding CDWs were mostly focused on bulk materials. However, applications for quantum devices require few-layer materials to fully utilize the emergent phenomena. The CDW field has greatly expanded over the decades, warranting a focus on the computational efforts surrounding them specifically in 2D materials. In this review, we cover ground in the following relevant theory-driven subtopics for TaS2 and TaSe2: summary of general computational techniques and methods, resulting atomic structures, the effect of electron–phonon interaction of the Raman scattering modes, the effects of confinement and dimensionality on the CDW, and we end with a future outlook. Through understanding how the computational methods have enabled incredible advancements in quantum materials, one may anticipate the ever-expanding directions available for continued pursuit as the field brings us through the 21st century. 
    more » « less
  7. Graphene nanoplatelets (GnPs) are promising candidates for gas sensing applications because they have a high surface area to volume ratio, high conductivity, and a high temperature stability. The information provided in this data article will cover the surface and structural properties of pure and chemically treated GnPs, specifically with carboxyl, ammonia, nitrogen, oxygen, fluorocarbon, and argon. Molecular dynamics and adsorption calculations are provided alongside characterization data, which was performed with Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) to determine the functional groups present and effects of those groups on the structural and vibrational properties. Certain features in the observed Raman spectra are attributed to the variations in concentration of the chemically treated GnPs. XRD data show smaller crystallite sizes for chemically treated GnPs that agree with images acquired with scanning electron microscopy. A molecular dynamics simulation is also employed to gain a better understanding of the Raman and adsorption properties of pure GnPs. 
    more » « less
  8. null (Ed.)
  9. null (Ed.)